Gelandangan di Pontianak diciduk Satpol PP karena kedapatan bangun rumah diatas pohon di Jalan Bardan Nadi, Pontianak Kota, Kalimantan Barat pada pagi tadi (8/6). Video pencidukan tersebut viral diberbagai akun sosial media Instagram kota Pontianak, salah satunya pada akun @pontianak_infomedia. Kelompokpro-kemerdekaan Papua mengeklaim bertanggung jawab atas penembakan yang menewaskan 10 warga sipil di Nduga. Peneliti isu Papua memperkirakan pemekaran provinsi di daerah "hotspot Terkiniid, Jakarta – Nana Saehuna seorang pengamat politik dari Research Eksekutif Pusat Data Riset (Pusdari) memprediksikan bahwa Partai Nasdem akan mengusung Gubernur DKI Jakarta Anies Baswedan sebagai Calon Presiden untuk Pilpres 2024.. Selain Anies, seperti diketahui Nasdem melalui Rakernas telah mengusulkan dua nama besar lainnya Jakarta Dalam KTT Khusus ASEAN-AS yang digelar di Kementerian Luar Negeri Amerika Serikat (AS), Washington, Jumat 13 Mei 2022 Presiden Joko Widodo (Jokowi) menyerukan perang di Ukraina agar Vay Nhanh Fast Money. 1. Seorang pengamat berada di atas mercusuar yang tingginya 12 meter. Ia melihat kapal A dan kapal B yang berlayar di laut. Jarak pengamat dengan kapal A dan kapal B berturut-turut 20 meter dan 13 meter. Posisi kapal A, kapal B, dan kaki mercusuar terletak segaris. Jarak kapal A dan kapal B adalah...QuestionGauthmathier2373Grade 11 YES! We solved the question!Check the full answer on App GauthmathGauth Tutor SolutionUniversity of LagosMaster's degreeAnswerExplanationFeedback from studentsClear explanation 98 Excellent Handwriting 91 Easy to understand 72 Help me a lot 70 Detailed steps 52 Correct answer 34 Write neatly 26 Does the answer help you? Rate for it!Gauthmath helper for ChromeCrop a question and search for answer. Its faster!Still have questions? Ask a live tutor for help live Q&A or pic step-by-step access to all gallery Tutor Now Soal pembahasan UN Matematika SMP tahun pelajaran 2017/2018 no. 26-30. Soal No. 26 Pasangan sudut dalam sepihak pada gambar berikut adalah… A. 1 dan 5 B. 2 dan 6 C. 3 dan 8 D. 4 dan 7 Pembahasan Pasangan sudut dalam sepihak dari gambar di atas adalah sudut 2 dan 5, serta sudut 3 dan 8. Jawaban C. 3 dan 8 Soal No. 27 Perhatikan gambar huruf F dari karton! Luas bangun huruf F tersebut adalah… A. cm2 B. cm2 C. 984 cm2 D. 976 cm2 Pembahasan Huruf F dibagi tiga bagian seperti gambar! Luas i = 60 x 10 = 600 Luas ii = 12 x 20 = 240 Luas iii = 12 x 12 = 144 ————————— + Luas = 984 cm2 Jawaban C. 984 cm2 Soal No. 28 Perhatikan gambar bangun datar berikut! Diketahui panjang AF = EF = 10 cm, BC = 6 cm, dan DE = 2 cm. Keliling bangun tersebut adalah… A. 52 cmB. 48 cmC. 32 cmD. 18 cm PembahasanData soalBD = 10 – 2 = 8 cmBC = 6 cmCari DC, pythagorasDC = √82 + 62= √100 = 10 cm Keliling = AB + BC + CD + DE + EF + FA= 10 + 6 + 10 + 2 + 10 + 10= 48 cm Jawaban B. 48 cm Soal No. 29Seorang pengamat berada di atas sebuah mercusuar yang memiliki ketinggian 80 meter. Pengamat melihat kapal A dan kapal B. Jarak pengamat ke kapal A 100 meter dan jarak pengamat ke kapal B 170 meter. Posisi alas mercusuar, kapal A, dan kapal B segaris. Jarak antara kapal A dan kapal B adalah… A. 70 meterB. 80 meterC. 90 meterD. 110 meter PembahasanP^80 metervM——————- A ———– B Jarak mercusuar ke A MA= √1002 – 802 = 60 meter Jarak Mercusuar ke kapal B MB= √1702 – 802= √28900 – 6400= √22500 = 150 meter Dengan demikian jarak A ke B adalah= 150 m – 60 m= 90 meter Jawaban C. 90 meter Soal No. 30Perhatikan gambar! Besar sudut ADB adalah… A. 124o B. 118o C. 62o D. 59o Pembahasan Tarik garis dari titik C ke D dan A ke D seperti gambar berikut! Sudut ADC 90° karena sudut keliling menghadap diameter. Besar sudut CDB = setengah dari sudut COB = 31° Sehingga besar sudut ADB = 90 – 31 = 59°Jawaban D. 59° Soal dan Pembahasan Bangun Datar Segitiga merupakan pembahasan soal-soal khusus tentang segitiga dengan segala bentuk persoalannya. Pada pembahasan ini, penekanan adalah cara menghitung sudut dalam dan sudut luar segitiga serta luas dan keliling segitiga. Sebelum berbicara tentang soal dan pembahasan, sebaiknya kita lakukan ulasan singkat tentang materi ini supaya adik-adik yang sudah agak lupa tentang segitiga bisa mengingat kembali hal-hal mengenai materi segitiga ini. Daftar isi 1 Pengertian dan Jenis-jenis Segitiga 2 Garis-garis Istimewa Pada Segitiga 3 Rumus Luas dan Rumus Keliling Segitiga 4 Rumus Sudut Luar Segitiga 5 Contoh Soal dan Pembahasan Bangun Datar Segitiga Pengertian dan Jenis-jenis SegitigaBangun datar segitiga adalah bangun dua dimensi yang dibatasi oleh tiga buah sisi. Segitiga bisa dibedakan berdasarkan panjang sisi-sisinya dan besar sudut-sudutnya.$\bullet$ Jika ditinjau dari panjang sisi-sisinya, bangun datar segitiga dibagi atas tiga bagian, yaitu 1. Segitiga sembarang. Segitiga sembarang memiliki panjang sisi-sisi yang berbeda. $AB ≠ BC ≠ AC$ $\angle A + \angle B + \angle C = 180^o$ 2. Segitiga sama kaki. Segitiga sama kaki adalah segitiga yang memiliki dua buah sisi sama panjang dan dua buah sudut sama besar. $AC = BC$ $\angle A = \angle B$ $\angle A + \angle B + \angle C = 180^o$ 3. Segitiga sama sisi. Segitiga sama sisi adalah segitiga yang ketiga sisi-sisinya sama panjang, dan ketiga sudutnya sama besar yang besarnya adalah $60^o$. $AB = BC = AC$ $\angle A = \angle B = \angle C = 60^o$ $\bullet$ Jika ditinjau dari besar sudutnya, segitiga dibagi atas tiga bagian, yaitu 1. Segitiga lancip. Segitiga lancip adalah segitiga yang ketiga sudutnya lebih kecil dari $90^o$. $\angle A 90^o$ $\angle B AB^2 + AC^2$ Garis-garis Istimewa Pada Segitiga1. Garis Tinggi. Garis tinggi adalah garis lurus yang ditarik dari titik sudut segitiga dan tegak lurus sisi yang di depannya. CE disebut garis tinggi. 2. Garis Bagi. Garis bagi adalah garis lurus yang ditarik dari titik sudut segitiga dan membagi dua sudut tersebut sama besar. AE disebut garis bagi. 3. Garis Sumbu. Garis sumbu adalah garis lurus yang mememotong titik tengah sisi suatu segitiga secara tegak lurus. DE disebut garis sumbu. 4. Garis Berat. Garis berat adalah garis lurus yang ditarik dari titik sudut suatu segitiga dan membagi dua sisi yang di depannya sama panjang. CD disebut garis berat. Rumus Luas dan Rumus Keliling Segitiga AB disebut alas CE disebut tinggi $Luas = \dfrac{1}{2}\ \times\ alas\ \times\ tinggi$ $Jika\ alas = a\ dan\ tinggi = t,\ maka$ $Luas = \dfrac{1}{2}at$ $Keliling = AB + BC + AC$ Note Panjang salah satu sisi segitiga harus lebih kecil dari jumlah kedua sisi yang lain. $AB < BC + AC$ $BC < AB + AC$ $AC < AB + BC$ Sudut terbesar selalu menghadap sisi terpanjang. Sudut terkecil selalu menghadap sisi terpendek. Sudut yang sedang menghadap sisi yang sedang. Rumus Sudut Luar SegitigaBesar sudut luar suatu segitiga sama dengan besar sudut dalam yang tidak berpelurus dengan sudut luar tersebut. Perhatikan gambar ! $\angle ABD\ dan\ \angle BCE$ adalah sudut luar segitiga ABC. $\angle ABD + \angle ABC = 180^o$ . . . . 1 $\angle BAC + \angle ACB + \angle ABC = 180^o$ . . . . 2 Dari persamaan 1 dan 2 $\angle ABD + \angle ABC = \angle BAC + \angle ACB + \angle ABC$ $\angle ABD = \angle BAC + \angle ACB$ Dengan cara yang sama, $\angle BCE = \angle BAC + \angle ABC$ Contoh Soal dan Pembahasan Bangun Datar Segitiga1. Diketahui sudut-sudut sebuah segitiga adalah $60^o$ dan $80^o$, maka besar sudut yang lain adalah . . . . $A.\ 30^o$ $B.\ 40^o$ $C.\ 50^o$ $A.\ 60^o$ Sudut dalam segitiga besarnya adalah $180^o$. Misalkan besar sudut yang lain adalah $x$, maka $\begin{align*} 60^o + 80^o + x &= 180^o\\ 140^o + x &= 180^o\\ x &= 180^o - 140^o\\ x &= 40^o → B. \end{align*}$ 2. Perhatikan gambar ! Besar sudut B adalah . . . . $A.\ 45^o$ $B.\ 55^o$ $C.\ 60^o$ $D.\ 75^o$ $\begin{align*} \angle A + \angle B + \angle C &= 180^o\\ 60^o + 3x^o + 5x^o &= 180^o\\ 60^o + 8x^o &= 180^o\\ 8x^o &= 180^o - 60^o\\ 8x^o &= 120^o\\ x &= 15\\ \angle B &= 3x^o\\ &= &= 45^o → A. \end{align*}$ 3. Besar sudut-sudut sebuah segitiga adalah $2x^o$, $x + 30^o$, dan $2x + 50^o$. Nilai $x$ adalah . . . . A. 5 B. 10 C. 15 D. 20 $\begin{align*} 2x^o + x + 30^o + 2x + 50^o &= 180^o\\ 2x + x + 30 + 2x + 50 &= 180\\ 5x + 80 &= 180\\ 5x &= 180 - 80\\ 5x &= 100\\ x &= 20 → D. \end{align*}$ 4. Diketahui segitiga sama kaki ABC, AC = BC. Jika besar $\angle ABC = 50^o$, maka besar $\angle ACB =$ . . . . $A.\ 80^o$ $B.\ 100^o$ $C.\ 120^o$ $D.\ 125^o$ Perhatikan gambar ! Karena AC = BC, maka $\angle A = \angle B = 50^o$ Sudut dalam segitiga besarnya $180^o$ $\begin{align*} \angle A + \angle B + \angle C &= 180^o\\ 50^o + 50^o + \angle C &= 180^o\\ 100^o + \angle C &= 180^o\\ \angle C &= 180^o - 100^o\\ \angle C &= 80^o → A. \end{align*}$ 5. Perhatikan Gambar ! Jika besar $\angle A = 40^o$, maka besar $\angle ACB$ adalah . . . . $A.\ 10^o$ $B.\ 20^o$ $C.\ 30^o$ $D.\ 50^o$ $\begin{align*} \angle A = \angle ADC &= 40^o\\ \angle A + \angle ADC + \angle ACD &= 180^o\\ 40^o + 40^o + \angle ACD &= 180^o\\ 80^o + \angle ACD &= 180^o\\ \angle ACD &= 180^o - 80^o\\ \angle ACD &= 100^o\\ \angle ADC + \angle BDC &= 180^o\\ 40^o + \angle BDC &= 180^o\\ \angle BDC &= 180^o - 40^o\\ \angle BDC &= 140^o\\ \end{align*}$ $Karena\ segitiga\ BCD\ sama\ kaki$ $\begin{align*} maka\ \angle B &= \angle BCD\\ Misalkan\ sudut\ B &= n\\ \angle B + \angle BDC + \angle BCD &= 180^o\\ n + 140^o + n &= 180^o\\ 2n &= 180^o - 140^o\\ 2n &= 40^o\\ n &= 20^o → B. \end{align*}$ 6. Segitiga PQR adalah segitiga sama kaki dengan PR = QR dan $\angle P\ \ \angle R = 3\ \ 4$. Besar $\angle Q$ adalah . . . . $A.\ 36^o$ $B.\ 48^o$ $C.\ 54^o$ $D.\ 72^o$ Perhatikan gambar! Karena PR = QR, maka $\angle P = \angle Q$ Misalkan sudut P = 3n, maka sudut Q = 3n, dan sudut R = 4n $\begin{align*} \angle P + \angle Q + \angle R &= 180^o\\ 3n + 3n + 4n &= 180^o\\ 10n &= 180^o\\ n &= 18^o\\ \angle Q &= 3n\\ &= &= 54^o → C. \end{align*}$ 7. Segitiga KLM adalah segitiga sama kaki, dimana KL = LM. Jika kililing segitiga KLM = 60 cm dan panjang KM = 30 cm, maka panjang KL = . . . . A. 5 cm B. 10 cm C. 15 cm D. 20 cm $Misalkan\ panjang\ KL = LM = p$ $\begin{align*} Keliling &= KL + LM + KM\\ 60 &= p + p + 30\\ 60 &= 2p + 30\\ 60 - 30 &= 2p\\ 30 &= 2p\\ 15 &= p\\ Panjang\ KL &= p\\ &= 15\ cm → C. \end{align*}$ 8. Diketahui Keliling $\Delta PQR = 180\ cm$. Jika $PQ\ \ QR\ \ PR = 2\ \ 3\ \ 4$, maka panjang $QR =$ . . . . $A.\ 40\ cm$ $B.\ 50\ cm$ $C.\ 60\ cm$ $D.\ 80\ cm$ $\begin{align*} Misalkan\\ PQ &= 2n\\ QR &= 3n\\ PR &= 4n\\ Keliling &= PQ + QR + PR\\ 180 &= 2n + 3n + 4n\\ 180 &= 9n\\ 20 &= n\\ QR &= 3n\\ &= &= 60\ cm → C. \end{align*}$ 9. Panjang alas suatu segitiga = 16 cm, dan tingginya = 8 cm. Luas segitiga tersebut adalah . . . . $A.\ 64\ cm^2$ $B.\ 48\ cm^2$ $C.\ 42\ cm^2$ $D.\ 36\ cm^2$ $Luas = \dfrac{1}{2}\ \times\ alas\ \times\ tinggi$ $Luas = \dfrac{1}{2}\ \times\ 16\ \times\ 8$ $Luas = 64\ cm^2$ → A. 10. Perhatikan gambar ! Luas segitiga pada gambar di atas adalah . . . . $A.\ 18\ cm^2$ $B.\ 24\ cm^2$ $C.\ 28\ cm^2$ $D.\ 32\ cm^2$ $\begin{align*} BC^2 &= AB^2 + AC^2\\ 10^2 &= AB^2 + 6^2\\ 100 &= AB^2 + 36\\ 100 - 36 &= AB^2\\ 64 &= AB^2\\ AB &= \sqrt{64}\\ AB &= 8\ cm\\ alas = AB &= 8\ cm\\ tinggi = AC &= 6\ cm\\ L &= \dfrac{1}{2}. &= &= 24\ cm^2 → B. \end{align*}$ Catatan Alas dan tinggi selalu saling tegak lurus. 11. Perhatikan gambar ! Luas segitiga di atas adalah . . . . $A.\ 24\ cm^2$ $B.\ 32\ cm^2$ $C.\ 36\ cm^2$ $D.\ 48\ cm^2$ AB → alas. CD → tinggi. $\begin{align*} AC^2 &= AD^2 + CD^2\\ 10^2 &= 6^2 + CD^2\\ 100 &= 36 + CD^2\\ 100 - 36 &= CD^2\\ 64 &= CD^2\\ CD &= \sqrt{64}\\ CD &= 8\ cm\\ Luas &= \dfrac{1}{2}. &= \dfrac{1}{2}. &= &= 48\ cm^2 → D. \end{align*}$ 12. $\angle ABC\ siku-siku\ di\ A,$ ditarik garis k dari titik C ke titik tengah AB. Garis k dinamakan . . . . A. Garis bagi B. Garis berat C. Garis tinggi D. Garis sumbu [Soal UN] Garis yang ditarik dari titik sudut ke titik tengah sisi yang dihadapannya adalah garis berat. → B. 13. Sebuah segitiga dapat dibentuk dari tiga buah garis berukuran seperti dibawah. Tiga buah garis yang tidak mungkin membentuk sebuah segitiga adalah . . . . A. 5 cm, 6 cm, dan 8 cm B. 11 cm, 7 cm, dan 15 cm C. 3 cm, 4 cm, dan 5 cm D. 6 cm, 4 cm, dan 11 cm Panjang salah satu sisi tidak boleh lebih atau sama dengan jumlah panjang dua sisi yang lain. Lihat pilihan D ! 11 cm ≥ 6 cm + 4 cm Salah satu sisi lebih panjang dari jumlah dua sisi yang lain, sehingga tidak mungkin membentuk segitiga. Jawab D. 14. Perhatikan gambar ! Nilai x = . . . . A. 50 B. 55 C. 60 D. 65$\begin{align*} \angle ADB &= 180^o - 108^o\\ \angle ADB &= 72^o\\ \angle ADB + \angle BAD + \angle ABD &= 180^o . . . . 1\\ \angle ABD + \angle CBD &= 180^o . . . . 2\\ Dari\ persamaan\ 1\ dan\ 2\\ \angle ADB + \angle BAD + \angle ABD &= \angle ABD + \angle CBD\\ \angle ADB + \angle BAD &= \angle CBD\\ 48^o + 72^o &= 2x - 10^o\\ 120^o &= 2x - 10^o\\ 120 &= 2x - 10\\ 120 + 10 &= 2x\\ 130 &= 2x\\ 65 &= x → D. \end{align*}$ 15. Perhatikan gambar bangun yang terdiri dari jajargenjang dan segitiga siku-siku. Keliling bangun tersebut adalah . . . . A. 105 cm B. 120 cm C. 123 cm D. 156 cm [Soal UN 2018] $\begin{align*} BC = CD = AE &= 15\ cm\\ AC^2 &= AB^2 - BC^2\\ &= 39^2 - 15^2\\ &= 1521 - 225\\ &= 1296\\ AC &= \sqrt{1296}\\ AC &= 36\ cm\\ AC = DE &= 36\ cm\\ Keliling &= AB + BC + CD + DE + AE\\ &= 39 + 15 + 15 + 36 + 15\\ &= 120\ cm → B. \end{align*}$ 16. Seorang pengamat berada di atas mercusuar yang tingginya 12 meter. Ia melihat kapal A dan kapal B yang berlayar di laut. Jarak pengamat dengan kapal A dan kapal B berturut-turut 20 meter dan 13 meter. Posisi kapal A, kapal B, dan kaki mercusuar terletak segaris. Jarak kapal A dan kapal B adalah . . . . A. 7 meter B. 11 meter C. 12 meter D. 15 meter [Soal UN 2018] Perhatikan gambar ! $\begin{align*} AB^2 &= BD^2 - AD^2\\ &= 13^2 - 12^2\\ &= 169 - 144\\ &= 25\\ AB &= \sqrt{25}\\ AB &= 5\ meter\\ AC^2 &= CD^2 - AD^2\\ &= 20^2 - 12^2\\ &= 400 - 144\\ &= 256\\ AC &= \sqrt{256}\\ AC &= 16\ meter\\ BC &= AC - AB\\ &= 16 - 5\\ &= 11\ meter → B. \end{align*}$ 17. Diketahui keliling suatu segitiga 52 cm, dan panjang salah satu sisinya adalah 20 cm. Jika perbandingan sisi kedua dan ketiga adalah 1 3, maka panjang sisi-sisi segitiga tersebut adalah . . . . A. 6 cm, 20 cm, dan 30 cm B. 8 cm, 20 cm, dan 24 cm C. 10 cm, 20 cm, dan 22 cm D. 12 cm, 20 cm, dan 20 cm Misalkan segitiga yang dimaksud adalah segitiga ABC. $\begin{align*} K = 52\ dan\ AB &= 20\ cm\\ BC\ \ AC &= 1\ \ 3\\ Misalkan\ BC &= n\ dan\ AC = 3n\\ K &= AB + BC + AC\\ 52 &= 20 + n + 3n\\ 52 - 20 &= 4n\\ 32 &= 4n\\ 8 &= n\\ BC = n &= 8\ cm\\ AC = 3n = &= 24\ cm\\ \end{align*}$ Maka sisi-sisi segitiga tersebut adalah 8 cm, 20 cm, dan 24 cm. → B. 18. Perhatikan gambar ! Besar $\angle BAC$ adalah . . . . $A.\ 30^o$ $B.\ 40^o$ $C.\ 50^o$ $D.\ 60^o$ $\begin{align*} \angle BAC &= 180^o - 5x^o\\ \angle BCE &= \angle BAC + \angle ABC\\ 3x - 20^o &= 180^o - 5x^o + 40^o\\ 3x - 20 &= 180 - 5x + 40\\ 3x + 5x &= 180 + 40 + 20\\ 8x &= 240\\ x &= 30\\ \angle BAC &= 180^o - &= 180^o - 150^o\\ &= 30^o → A. \end{align*}$ 19. Perhatikan gambar ! Diketahui panjang BD = 12 cm, AE = 10 cm, dan CE = 16 cm. Luas bangun ABCD adalah . . . . $A.\ 156\ cm^2$ $B.\ 146\ cm^2$ $C.\ 136\ cm^2$ $D.\ 126\ cm^2$ $Perhatikan\ segitiga\ ABD\ !$ $\begin{align*} alas &= BD\\ tinggi &= AE\\ Luas &= \dfrac{1}{2}. &= \dfrac{1}{2}. &= 60\ cm^2\\ \end{align*}$ $Perhatikan\ segitiga\ BCD\ !$ $\begin{align*} alas &= BD\\ tinggi &= CE\\ Luas &= \dfrac{1}{2}. &= \dfrac{1}{2}. &= 96\ cm^2\\ Luas\ ABCD &= luas\ \Delta ABD + luas\ \Delta BCD\\ &= 60 + 96\\ &= 156\ cm^2 → A. \end{align*}$ 20. Perhatikan gambar ! Diketahui panjang AB = 16 cm, DF = 12 cm, CH = 12 cm, dan EG = 5 cm. Luas bangun ADEBCE adalah . . . . $A.\ 96\ cm^2$ $B.\ 108\ cm^2$ $C.\ 116\ cm^2$ $D.\ 148\ cm^2$ $\begin{align*} Luas\ \Delta ABD &= \dfrac{1}{2}. &= \dfrac{1}{2}. &= 96\ cm^2\\ Luas\ \Delta ABC &= \dfrac{1}{2}. &= \dfrac{1}{2}. &= 80\ cm^2\\ Luas\ \Delta ABE &= \dfrac{1}{2}. &= \dfrac{1}{2}. &= 40\ cm^2\\ Luas\ \Delta AED &= luas\ \Delta ABD - luas\ \Delta ABE\\ Luas\ \Delta AED &= 96 - 40\\ Luas\ \Delta AED &= 56\ cm^2\\ Luas\ \Delta BCE &= luas\ \Delta ABC - luas\ \Delta ABE\\ Luas\ \Delta BCE &= 80 - 40\\ Luas\ \Delta BCE &= 40\ cm^2\\ Luas\ ADEBCE &= luas\ \Delta AED + luas\ \Delta BCE\\ Luas\ ADEBCE &= 56 + 40\\ Luas\ ADEBCE &= 96\ cm^2. → A. \end{align*}$ Demikianlah soal dan pembahasan bangun datar segitiga. Selamat belajar !SHARE THIS POST Kelas 8 SMPTEOREMA PYTHAGORASPenerapan Teorema Pythagoras pada Soal CeritaSeorang pengamat berada di atas mercusuar yang tingginya 12 meter. la melihat kapal A dan kapal B yang berlayar di laut. Jarak pengamat dengan kapal A , dan B berturut-turut 20 meter dan 13 meter. P'osisi kapal A, kapal B, dan kaki mercusuar terletak segaris. Jarak kapal A dan kapal B adalah ....Penerapan Teorema Pythagoras pada Soal CeritaTEOREMA PYTHAGORASGEOMETRIMatematikaRekomendasi video solusi lainnya0157Sebuah kapal berlayar sejauh 90 km ke arah timur, kemud...0102Seekor kelinci yang berada di lubang tanah tempat persemb...0318Sebuah tangga yang panjangnya 12,5 m disandarkan pada tem...0341Sebuah pesawat terbang bergerak pada ketinggian konstan ...Teks videoHaikal friend pada soal ini kita akan menentukan jarak kapal A dan kapal b adalah disini diketahui seorang pengamat berada diatas mercusuar yang tingginya 2 M akan di sini adalah sebuah mercusuar Di mana posisi pengamat berada di sini adalah itu di sini tingginya 12 m kemudian ia melihat kapal A dan kapal B yang berlayar di laut jarak pengamat dengan kapal A dan B berturut-turut 20 m dan 13 m sehingga dari sini berarti untuk kapal a dan b berarti di sini untuk kapal a jaraknya adalah 20 m kemudian disini untuk kapal B yaitu 13 m. Kemudian dari sini posisi kapal A dan kapal dan kaki mercusuar terletak segaris maka dari sini berarti dia segaris sehingga kita akan menentukan jarak kapal A dan kapal B sehingga di sini di misal titik nya yaitu kaki mercusuar itu adalah karena dia terletak segaris dan disini untuk tinggi mercusuar nya 12 M maka disini untuk sudut m adalah 90 derajat maka dari sini kita harus menentukan yaitu jarak m dimana disini kita bisa menggunakan teorema Pythagoras yaitu jumlah kuadrat sisi miring sama dengan jumlah kuadrat sisi siku-sikunya sisi miring itu sendiri adalah Sisi yang berada didepan sudut siku-siku 3 yang pertama pada segitiga a cm maka Sisi miringnya adalah AB sehingga A = m kuadrat ditambah dengan p m kuadrat sehingga dari sini berarti 20 kuadrat = m kuadrat ditambah PM berarti 12 kuadrat sehingga 400 = kuadrat ditambah 144 sehingga am kuadrat = 400144 sehingga am kuadrat = 400 dikurangi dengan 144 hasilnya adalah 256 maka diperoleh disini untuk am berarti = akar dari 256 hasilnya yaitu di sini dengan 16 M Kemudian dari sini Kita sudah mengetahui jarak a ke m ya kemudian kita akan tentukan jarak B ke M atau m ke sini segitiga b p m maka dia Sisi miringnya adalah BP karena dia berhadapan dengan sudut siku-siku sehingga dari sini berarti berdasarkan teorema Pythagoras kuadrat = b kuadrat ditambah dengan p m kuadrat maka dari sini berarti 13 kuadrat = b m kuadrat ditambah 12 kuadrat 69 = b kuadrat ditambah 144 sehingga b kuadrat = 169 144 maka V m kuadrat = diperoleh hasilnya di sini adalah 25 sehingga B = akar dari 25 hasilnya = 5 m. Jika sudah mengetahui jarak dari b m sehingga untuk jarak kapal A dan kapal B yaitu = disini am dikurangi dengan DM = Hm disini adalah 16 dikurangi dengan 5 hasilnya sama dengan 11 m dari pertanyaan berikutnyaSukses nggak pernah instan. Latihan topik lain, yuk!12 SMAPeluang WajibKekongruenan dan KesebangunanStatistika InferensiaDimensi TigaStatistika WajibLimit Fungsi TrigonometriTurunan Fungsi Trigonometri11 SMABarisanLimit FungsiTurunanIntegralPersamaan Lingkaran dan Irisan Dua LingkaranIntegral TentuIntegral ParsialInduksi MatematikaProgram LinearMatriksTransformasiFungsi TrigonometriPersamaan TrigonometriIrisan KerucutPolinomial10 SMAFungsiTrigonometriSkalar dan vektor serta operasi aljabar vektorLogika MatematikaPersamaan Dan Pertidaksamaan Linear Satu Variabel WajibPertidaksamaan Rasional Dan Irasional Satu VariabelSistem Persamaan Linear Tiga VariabelSistem Pertidaksamaan Dua VariabelSistem Persamaan Linier Dua VariabelSistem Pertidaksamaan Linier Dua VariabelGrafik, Persamaan, Dan Pertidaksamaan Eksponen Dan Logaritma9 SMPTransformasi GeometriKesebangunan dan KongruensiBangun Ruang Sisi LengkungBilangan Berpangkat Dan Bentuk AkarPersamaan KuadratFungsi Kuadrat8 SMPTeorema PhytagorasLingkaranGaris Singgung LingkaranBangun Ruang Sisi DatarPeluangPola Bilangan Dan Barisan BilanganKoordinat CartesiusRelasi Dan FungsiPersamaan Garis LurusSistem Persamaan Linear Dua Variabel Spldv7 SMPPerbandinganAritmetika Sosial Aplikasi AljabarSudut dan Garis SejajarSegi EmpatSegitigaStatistikaBilangan Bulat Dan PecahanHimpunanOperasi Dan Faktorisasi Bentuk AljabarPersamaan Dan Pertidaksamaan Linear Satu Variabel6 SDBangun RuangStatistika 6Sistem KoordinatBilangan BulatLingkaran5 SDBangun RuangPengumpulan dan Penyajian DataOperasi Bilangan PecahanKecepatan Dan DebitSkalaPerpangkatan Dan Akar4 SDAproksimasi / PembulatanBangun DatarStatistikaPengukuran SudutBilangan RomawiPecahanKPK Dan FPB12 SMATeori Relativitas KhususKonsep dan Fenomena KuantumTeknologi DigitalInti AtomSumber-Sumber EnergiRangkaian Arus SearahListrik Statis ElektrostatikaMedan MagnetInduksi ElektromagnetikRangkaian Arus Bolak BalikRadiasi Elektromagnetik11 SMAHukum TermodinamikaCiri-Ciri Gelombang MekanikGelombang Berjalan dan Gelombang StasionerGelombang BunyiGelombang CahayaAlat-Alat OptikGejala Pemanasan GlobalAlternatif SolusiKeseimbangan Dan Dinamika RotasiElastisitas Dan Hukum HookeFluida StatikFluida DinamikSuhu, Kalor Dan Perpindahan KalorTeori Kinetik Gas10 SMAHukum NewtonHukum Newton Tentang GravitasiUsaha Kerja Dan EnergiMomentum dan ImpulsGetaran HarmonisHakikat Fisika Dan Prosedur IlmiahPengukuranVektorGerak LurusGerak ParabolaGerak Melingkar9 SMPKelistrikan, Kemagnetan dan Pemanfaatannya dalam Produk TeknologiProduk TeknologiSifat BahanKelistrikan Dan Teknologi Listrik Di Lingkungan8 SMPTekananCahayaGetaran dan GelombangGerak Dan GayaPesawat Sederhana7 SMPTata SuryaObjek Ilmu Pengetahuan Alam Dan PengamatannyaZat Dan KarakteristiknyaSuhu Dan KalorEnergiFisika Geografi12 SMAStruktur, Tata Nama, Sifat, Isomer, Identifikasi, dan Kegunaan SenyawaBenzena dan TurunannyaStruktur, Tata Nama, Sifat, Penggunaan, dan Penggolongan MakromolekulSifat Koligatif LarutanReaksi Redoks Dan Sel ElektrokimiaKimia Unsur11 SMAAsam dan BasaKesetimbangan Ion dan pH Larutan GaramLarutan PenyanggaTitrasiKesetimbangan Larutan KspSistem KoloidKimia TerapanSenyawa HidrokarbonMinyak BumiTermokimiaLaju ReaksiKesetimbangan Kimia Dan Pergeseran Kesetimbangan10 SMALarutan Elektrolit dan Larutan Non-ElektrolitReaksi Reduksi dan Oksidasi serta Tata Nama SenyawaHukum-Hukum Dasar Kimia dan StoikiometriMetode Ilmiah, Hakikat Ilmu Kimia, Keselamatan dan Keamanan Kimia di Laboratorium, serta Peran Kimia dalam KehidupanStruktur Atom Dan Tabel PeriodikIkatan Kimia, Bentuk Molekul, Dan Interaksi Antarmolekul

seorang pengamat berada di atas